The Rate of Photorespiration during Photosynthesis and the Relationship of the Substrate of Light Respiration to the Products of Photosynthesis in Sunflower Leaves¹ Received for publication May 5, 1971 L. J. Ludwig² and D. T. Canvin Department of Biology, Queen's University, Kingston, Ontario, Canada ### **ABSTRACT** Single attached leaves of sunflower (Helianthus annus L. "Mennonite") were supplied "CO₂ of constant specific radioactivity in gas mixtures containing various CO₂ and O₂ concentrations. The "CO₂ and CO₂ fluxes were measured concurrently in an open system using an ionization chamber and infrared gas analyzer. The rate of photorespiration (5.7 \pm 0.3 mg CO₂·dm⁻²·hr⁻¹) during photosynthesis in 21% O₂ at 25 C and 3,500 footcandles was over three times the rate of dark respiration and was independent of CO₂ concentrations from 0 to 300 μ l/l. The steady rate of CO₂ evolution into CO₂-free air was about 30% lower. Low oxygen (1%) inhibited both ¹⁴CO₂ and CO₂ evolution, both during photosynthesis and in CO₂-free air in the light. At 300 μ l/l CO₂ apparent photosynthesis was inhibited 41% by 21% O₂. Two-thirds of the inhibition was due to the inhibition of true photosynthesis by oxygen and one-third due to the stimulation of photorespiration. At 50 μ l/l CO₂, where the percentage inhibition of apparent photosynthesis by 21% oxygen was 92%, photorespiration accounted for two-thirds of the total inhibition. The rate of "CO₂ uptake by the leaf decreased about 30 seconds after the introduction of "CO₂, indicating that "CO₂ was rapidly evolved from the leaf. The rate of "CO₂ evolution increased rapidly with time, the kinetics depending on the CO₂ concentration. The high specific radioactivity of the "CO₂ evolved during photosynthesis or in the early period of flushing in CO₂-free air showed that the substrate for light respiration was an early product of photosynthesis. From the measurement of "CO₂ and CO₂ evolution into CO₂-free air over a longer time period it was apparent that at least three compounds, each of decreased "C content, could supply the substrate for light respiration. Based on a consideration of the specific radioactivity of ¹⁴CO₂ evolved under a variety of conditions, it is suggested that total CO₂ evolution in the light or photorespiration is composed of two processes, dark respiration and light respiration. Light respiration is a process that only occurs in the light, persists for some time on darkening, and metabolizes substrates that are quite different from those of dark respiration. There is now much evidence to show that the rate of CO₂ evolution from green leaves in the light exceeds that of dark respiration and that the substrate and mechanism of CO2 evolution in the light are different from those of CO2 evolution in the dark (24). All methods to date (23, 24, 38), however, have not measured the rate of photorespiration under conditions of steady state photosynthesis nor have they (18, 38) allowed a continuous measurement of the specific radioactivity of the ¹⁴CO₂ evolved from a leaf during or after a period of photosynthesis in ¹¹CO₂. We have recently described a system (26) which continuously measures the CO₂ or ¹⁴CO₂ fluxes from leaves. In this paper we present results on the rates of photorespiration during steady state photosynthesis and on the relationship of the ¹⁴CO₂ evolved to the products of ¹⁴CO₂ fixation. Brief accounts of this work have previously been presented (27, 28). # MATERIALS AND METHODS The materials and methods have been fully described in a preceding paper (26). Sunflower leaves (*Helianthus annuus* L. "Mennonite"), grown as previously described (26), were used for all experiments. # **RESULTS** From the CO₂ and 14 CO₂ uptake and the average specific radioactivity of 14 CO₂ in the leaf chamber the rates of true photosynthesis, apparent photosynthesis and photorespiration of sunflower leaves were determined (Fig. 1). The estimated rate of true CO₂ uptake in 21% O₂ was consistently about 5.7 \pm 0.3 mg CO₂·dm⁻²·hr⁻¹ higher than the rate of apparent CO₂ uptake (Fig. 1). The rate of CO₂ evolution, represented by this difference, was therefore independent of the CO₂ concentration and the rate of photosynthesis. A similar estimate of the rate of CO₂ evolution was obtained when the rate of apparent photosynthesis in 21% O₂ was extrapolated to zero CO₂ concentration. The rates of apparent CO_2 uptake in 1% O_2 were considerably higher than the rates in 21% O_2 at comparable CO_2 concentrations. The estimated rates of true CO_2 uptake in 1% O_2 were not significantly different to the apparent rates and there was no measurable CO_2 evolution (Fig. 1). It is clear from these results that an increase in the oxygen concentration had two effects on the CO_2 exchange of a sunflower leaf; the rate of true CO_2 uptake was inhibited, and the rate of CO_2 evolution was stimulated. The net effect was a considerable decrease in the rate of apparent CO_2 uptake. As shown in a previous publication (26), ¹⁴CO₂ uptake was maximum 30 sec after the introduction of ¹⁴CO₂ to the leaf ¹ Supported in part by the National Research Council of Canada. ² Present address: Glasshouse Crops Research Institute, Worthing Road, Rustington, Littlehampton, Sussex, England. chamber and then decreased as time in ¹⁴CO₂ was extended. This decrease in ¹⁴CO₂ uptake was ascribed to ¹⁴CO₂ evolution, and the amount of ¹⁴CO₂ evolution at any time could be cal- Fig. 1. Effects of CO₂ (average in the leaf chamber) and O₂ concentration on the rate of true photosynthesis, apparent photosynthesis and photorespiration of sunflower leaves. culated (26). Since the CO₂ concentration in the leaf chamber was constant with time and steady rates of apparent CO₂ uptake were measured, it was assumed that the rate of CO₂ evolution was constant also over the "CO₂ uptake period. Thus, from the rates of "CO₂ and CO₂ evolution the specific radioactivity of the "CO₂ evolved could be calculated. The specific radioactivity of the "CO₂ evolved from the leaf was expressed as a percentage of the average specific radioactivity of "CO₂ in the chamber, and this value was termed the relative specific radioactivity. The effect of CO₂ concentration on the relative specific radioactivity of $^{14}\text{CO}_2$ evolved from the leaf is clearly shown in Figure 2. $^{14}\text{CO}_2$ evolution from the leaf was observed at all CO₂ concentrations within 1 min after $^{14}\text{CO}_2$ was supplied to the leaf. In 290 μ l/1 CO₂ the specific radioactivity of the evolved $^{14}\text{CO}_2$ rapidly increased, and within 7 min it had approached the specific radioactivity of the supplied $^{14}\text{CO}_2$. Thereafter, it remained constant. In 150 μ l/1 CO₂, the relative specific radioactivity increased rapidly to a value of 70% and then slowly increased during the remainder of the experimental period. In 53 μ l/1 CO₂, the relative specific radioactivity of the evolved $^{14}\text{CO}_2$ increased rather slowly and appeared to equilibrate partially at a value of 60%. At the end of the "CO₂ uptake period (60 min), the leaf chamber was flushed with CO₂-free air, and the rates of "CO₂ and CO₂ evolution were determined directly. The specific radioactivity of the "CO₂ evolved from the leaf was calculated and related to the specific radioactivity of the "CO₂ previously supplied to the leaf chamber. In CO₂-free air the relative specific radioactivity decreased rapidly, but the value determined in the first minute of flushing agreed remarkably well with the value calculated from the "CO₂ uptake data (Fig. 2) just prior to flushing. The close agreement between the measured and calculated values indicated that the calculations (26) provided a reliable estimate of the relative specific radioactivity of the "CO₂ evolved during photosynthesis. More extensive results of flushing the leaf after 60 min photosynthesis in "CO₂ with CO₂-free air or with normal air in the light and dark are presented in Figures 3, 4 and 5. The rates of CO₂ evolution in CO₂-free air in the light were similar Fig. 2. Effect of CO₂ concentration on the relative specific radioactivity of ¹⁴CO₂ evolved by sunflower leaves during photosynthesis in ¹⁴CO₂. (Results from five experiments at each CO₂ concentration; vertical lines represent 95% confidence intervals). Fig. 3. $^{14}\text{CO}_2$ and CO₂ evolution by illuminated or darkened sunflower leaves following 60 min photosynthesis in $^{14}\text{CO}_2$ and 53 μ l/1 CO₂. in the three experiments and in the first few minutes of flushing were between 5 and 6 mg CO₂·dm⁻²·hr⁻¹. These rates (Figs. 3–5) agreed very well with the rates estimated using ¹⁴CO₂ during photosynthesis (Fig. 1) and support the conclusion that the CO₂ concentration and the rate of photosynthesis have little effect on the rate of CO₂ evolution. The rate of CO₂ evolution did not remain constant, however, but decreased, with some fluctuation, to a steady rate of 4 mg CO₂·dm⁻²·hr⁻¹. The slow fluctuations in rate during the first 60 min of flushing were not always observed and, at present, cannot be explained. The transpiration rate was constant over this period indicating that changes in stomatal aperture were not involved. When the leaf was flushed with CO₂-free air in the dark, the rates of CO₂ evolution were similar in the three experiments and two bursts of CO₂ were apparent. The first burst occurred in the first minute of darkness and the maximum rate of CO₂ evolution was 8 to 9 mg CO₂·dm⁻²·hr⁻¹. A second, smaller burst followed a few minutes later, and then the rate slowly decreased to about 1.7 mg CO₂·dm⁻²·hr⁻¹. The patterns of "CO₂ evolution when illuminated or darkened leaves were flushed with CO₂-free air were similar to the patterns of CO₂ evolution, but there were several major differences. The rate of "CO₂ evolution in the light was initially high and steadily decreased during the first 15 min of flushing. When the CO₂ concentration was 53 μ l/1 during the "CO₂ uptake period (Fig. 3), the rate of "CO₂ evolution, after the initial rapid decrease, slowly decreased to a very low rate, but when the previous CO₂ concentration was 335 μ l/1 (Fig. 5) a very considerable increase in the rate of "CO₂ evolution was observed after the first 15 min. The maximum rate occurred after about 60 min in CO₂-free air and then slowly decreased. A comparable small increase in the rate of ¹⁴CO₂ evolution was observed when the previous CO₂ concentration was 150 μ l/l (Fig. 4). A comparison of ¹⁴CO₂ evolution in the light and in darkness shows that the rates of ¹⁴CO₂ evolution in the light were very much higher than the rates in darkness, except for the dark outbrust in the first minute. Similar results have been presented by Goldsworthy (18) and Zelitch (38, 39). When an illuminated leaf was flushed with a gas mixture containing CO₂, the rate of ¹⁴CO₂ evolution decreased more rapidly than in CO₂-free air and soon reached a low rate. The previous CO₂ concentration had a considerable effect on the relative specific radioactivity of ¹⁴CO₂ evolved into CO₂free air in light and in darkness. When the previous CO2 concentrations were 53 μ l/l, 150 μ l/l, and 335 μ l/l (Figs. 3–5) the relative specific radioactivities in both light and darkness were initially about 68%, 82%, and 97%, respectively, values very close to the values calculated during the ¹⁴CO₂ uptake period (Fig. 2). With continued flushing in the light, the relative specific radioactivity decreased in all experiments. When the previous CO₂ concentration was 53 µl/l, the specific radioactivity decreased steadily. When the previous CO2 concentration was 150 µl/l, the relative specific radioactivity steadily declined to about 30% where it remained for about 20 min before declining further. When the previous CO₂ concentration was 335 µl/l, the relative specific radioactivity decreased to about 60% where it remained for a considerable period before FIG. 4. $^{14}\text{CO}_2$ and CO₂ evolution by illuminated or darkened sunflower leaves following 60 min photosynthesis in $^{14}\text{CO}_2$ and 150 μ l/1 CO₂. decreasing further. In the dark, immediately following the first outburst, the relative specific radioactivity decreased very rapidly in all experiments. If the relative specific radioactivities in light and in darkness are compared, the following observations may be made. Initially, at the time of the first outburst, the relative specific radioactivities were the same in light and in darkness. However, following this outburst there was a considerable period when the relative specific radioactivity of ${}^{14}\text{CO}_2$ evolved in the light was considerably higher than the relative specific radioactivity in darkness, particularly in experiments where the previous CO₂ concentration was high (Fig. 5). Eventually the relative specific radioactivity in the light declined to equal that in the dark. This occurred after about 60 min, when the previous CO₂ concentration was 53 μ l/1, 90 min when it was 150 μ l/1, and several hours when it was 335 μ l/1. In the foregoing results, it appeared that the relative specific radioactivity of the "CO₂ evolved into CO₂-free air following a period of photosynthesis in "CO₂ depended upon the CO₂ concentration and thus probably upon the amount of CO₂ fixed. To further investigate this aspect, "CO₂ was supplied, the leaf was flushed with CO₂-free air in the light, and the relative specific radioactivity of the evolved "CO₂ was determined (Fig. 6). The relative specific radioactivities measured in the first minute of flushing (Fig. 6) agreed closely with expected values determined from the calculated data shown in Figure 2 and supported the conclusion that the substrate(s) for CO₂ evolu- Fig. 5. $^{14}\text{CO}_2$ and CO₂ evolution by illuminated or darkened sunflower leaves following 60 min photosynthesis in $^{14}\text{CO}_2$ and 335 μ l/1 CO₂. Fig. 6. The relative specific radioactivity of ¹⁴CO₂ evolved into CO₂-free air in the light following various periods of photosynthesis in ¹⁴CO₂. The CO₂ concentration and time of photosynthesis are shown on the graph. tion during photosynthesis in 53 to 56 μ l/1 or 298 to 335 μ l/1 CO₂ were highly labeled after short periods in ¹⁴CO₂. When the previous CO₂ concentration was 53 to 56 μ l/l, the relative specific radioactivity steadily decreased to a low value (Fig. 6). Similar results were obtained when the period of $^{\rm u}$ CO₂ uptake in 298 to 335 μ l/l was short (5 or 10 min), but when the uptake period was increased to 60 min the relative specific radioactivity decreased steadily to about 60% where it remained for a considerable period of time. These results therefore show that the relative specific radio-activity of the evolved "CO₂ was proportional to the total CO₂ fixation and that continued evolution of high specific radio-activity "CO₂ occurred only when the CO₂ concentration during the "CO₂ uptake period was high, and only after relatively long periods in "CO₂, *i.e.*, only when total "CO₂ fixation was large. Similar experiments were carried out to determine the effect of total CO₂ fixation on the relative specific radioactivity of the "CO₂ evolved into CO₂-free air in darkness (25). As the total fixation of "CO₂ increased, the relative specific radioactivity of the "CO₂ evolved during the first dark outburst increased. The labeling patterns were similar to those shown in Figure 2 and suggested that the "CO₂ evolved during the dark outburst was of similar origin to that evolved during photosynthesis. The relative specific radioactivity of the "CO₂ evolved in steady dark respiration was low in all experiments and extremely long periods in "CO₂ would be required before the specific radioactivity of "CO₂ evolved in the dark completely equilibrated with the "CO₂ supplied. To determine further the effect of various amounts of CO₂ fixation on the specific radioactivity of the "CO₂ subsequently evolved into CO₂-free air in the light, CO₂ fixation was varied Fig. 7. Effects of the previous CO₂ concentration on the relative specific radioactivity of ¹⁴CO₂ evolved into CO₂-free air in the light. O₂ concentration during photosynthesis was 21% and time of photosynthesis in ¹⁴CO₂ was 60 min. Fig. 8. Effects of the CO₂ and O₂ concentration (indicated on graph) during fixation on the relative specific radioactivity of ¹⁴CO₂ evolved into CO₂-free air in the light. All ¹⁴CO₂ fixation periods were 60 min. by changing the CO_2 or O_2 concentrations (Figs. 7 and 8). At 53 and 149 μ l/l CO_2 the changes in specific radioactivity (Fig. 7) were similar to those already described (Fig. 3 and 4) and indicated a rapid change from the utilization of a radioactive substrate during the photosynthetic period to a nonradioactive substrate in CO_2 -free air. When the CO_2 concentration during the " CO_2 uptake period was 340 μ l/1 or higher, however, a second substrate could be readily distinguished. The amount of this second substrate was increased after " CO_2 fixation in 505 or 694 μ l/1 CO_2 , but there was little increase in its specific radioactivity (Fig. 7). When the fixation was varied by decreasing the oxygen concentration to 1%, two radioactive and a nonradioactive substrate were again available for CO_2 evolution in CO_2 -free air (Fig. 8) in spite of the fact that all $^{14}CO_2$ fixation occurred in 1% O_2 where there was little, if any, $^{14}CO_2$ evolution or CO_2 evolution (Fig. 1). In all three CO_2 concentrations a decrease in the O_2 concentration to 1% during fixation increased the amount of the second radioactive substrate (Fig. 8). One percent O_2 also significantly increased the specific radioactivity of this substrate in the 51 and 142 μ l/1 CO_2 experiments, but not in the 300 μ l/1 experiment. In general, at each CO_2 concentration a reduction of the O_2 concentration to 1% had an effect similar to that observed from increasing the CO_2 concentration at 21% O_2 (Fig. 8). The amount and relative specific radioactivity of the second substrate utilized in CO₂-free air therefore seems to depend on the total carbon fixed during the "CO₂ uptake period. When rates of apparent CO₂ uptake were below 10 mg CO₂·dm⁻²·hr⁻¹, little of the second substrate was observed. Increasing apparent CO₂ uptake from 10 to 40 mg CO₂·dm⁻²·hr⁻¹ resulted in an increased amount of this second radioactive substrate. For example, when the previous rates of CO₂ fixation were 10, 30, and 40 mg CO₂, this second substrate supported high rates of "CO₂ evolution in CO₂-free air for about 20, 60, and 140 min respectively, before it was gradually replaced by the third unlabeled substrate. The specific radioactivity of the second substrate increased with increasing fixation up to about 25 mg CO₂·dm⁻²·hr⁻¹. Further increases in fixation had little effect. # **DISCUSSION** By using the open system described previously (26), reliable measurements of the CO₂ and ¹⁴CO₂ fluxes from leaves in the light were obtained 30 sec after the ¹⁴CO₂ was introduced into the leaf chamber. Since the gas composition and other con- ditions were constant, the leaf was always under steady rate (and presumably steady state) conditions of photosynthesis. The observed changes in ¹⁴CO₂ or CO₂ fluxes could not be ascribed to changes in stomatal aperture as the transpiration rate of leaves in the light was not affected by the O₂ concentration and was only slightly affected by the CO₂ concentration. Stomata were open in all treatments as indicated by the low laminar and stomatal resistances (r_a + r_s) CO₂, 0.68 sec·cm⁻¹ in CO₂-free air and 0.78 sec·cm⁻¹ in 340 µl/l CO₂. Gauhl and Bjorkman (16) and D'Aoust (8) have also shown that the transpiration rate of leaves was not affected by the O₂ concentration. The rate of photorespiration of sunflower leaves was not affected by the rate of photosynthesis or CO₂ concentration over a range of 0 to 300 μ l/1 CO₂ as the same rate of 5.7 \pm 0.3 mg CO₂·dm⁻²·hr⁻¹ was measured by the ¹⁴CO₂/CO₂ technique (Fig. 1) by evolution into CO₂-free air (Fig. 3, 4, and 5) or by extrapolation of the rate of apparent photosynthesis to zero CO₂ (Fig. 1). It is clear that maximum rates of CO₂ evolution into CO₂-free air are only obtained in the first 5 min of flushing, and thereafter the rate decreases by about 30% (Figs. 3-5). It is also clear that maximum rates of CO₂ evolution are measured by the "CO₂/CO₂ technique only if the measurements are performed within the first minute after "CO2 is introduced into the leaf chamber (12, 23). If the measurements are not performed until 2 min after 14CO2 is supplied to the leaf, the amount of CO₂ evolution will be underestimated 10% at 53 μ l/l and will be underestimated 50% at 300 μ l/l (Fig. 2). Bidwell et al. (5) have presented data, obtained with a closed system, showing that the rate of photorespiration in bean leaves at 40 to 80 μl/l CO₂ was four times the rate of photorespiration at 300 to 400 μ l/1 CO₂. Whereas bean leaves may well be different from sunflowers, the results they obtained are precisely those expected if the initial "CO2 uptake was not determined until 2 to 3 min had elapsed after "CO2 was first introduced to the leaf (36). It is well established for many plants (21, 24) that the rate of apparent photosynthesis in 21% O₀ is considerably less than the rate of apparent photosynthesis in 1% O₂. Tregunna et al. (35) and Forrester et al. (15) concluded that the inhibition of apparent photosynthesis by O2 was due to two different effects, a stimulation of photorespiration and an inhibition of true photosynthesis. In the present study, it was possible, for the first time, to measure directly the separate effects of oxygen on true photosynthesis and concurrent photorespiration (Fig. 1). Photorespiration was not affected by CO₂ concentration but true photosynthesis was, so that as the CO₂ concentration changed the relative importance of O₂ on these processes also altered. Thus, at 50 µl/l CO₂, the inhibition of true photosynthesis accounted for 33% of the total inhibition of apparent photosynthesis and photorespiration for the remaining 66%. At 300 µl/1 CO₂ 68% of the total inhibition could be ascribed to an inhibition of true photosynthesis and only 32% to photorespiration. Curtis et al. (7) calculated that the total inhibition of apparent photosynthesis by oxygen could be about equally ascribed to an inhibition of true photosynthesis and a stimulation of photorespiration. Because of these dual effects of oxygen, it does not appear valid to assume that the difference between the rate of apparent photosynthesis in 1% and 21% O₂ is entirely due to photorespiration (14, 21), as a direct effect of O2 on photosynthesis (17) could also be involved. The specific radioactivity of the ¹⁴CO₂ evolved during photosynthesis or in the first minute of flushing with CO₂-free air showed quite clearly that during these times a very large proportion of the substrate for photorespiration was an immediate product of photosynthesis (Fig. 2). After longer flushing in CO₂-free air in the light, however, a more complex Fig. 9. Diagrammatic representation showing carbon flow (arrows) and relationships between the carbon compounds of photosynthesis (P_s), light respiration (R_L), and dark respiration (R_D). For further details see text. picture was presented, as CO2 evolution did not cease and "CO₂ evolution varied markedly with the amount of "CO₂ fixation that occurred in the previous photosynthetic period. For further discussion of the specific radioactivity changes a diagrammatic scheme showing compartments and direction of carbon flow is presented in Figure 9. The compartments are defined more in conceptual terms rather than in physical or chemical terms. Photosynthesis (Ps), physically located in the chloroplast (2, 20) includes the site of CO₂ fixation and the chemical intermediates of photosynthesis (2). Light respiration (R_L) includes the site of CO₂ release in the light and its immediate substrate. It has been suggested that CO2 release in the light involves the chloroplast (5) or the peroxisomes and mitochondria (34), and that the substrate is glyoxylate (37) or glycine (34). Dark respiration (R_D) includes the compounds of the dark respiratory pathways (3). Photorespiration, or the accelerated CO2 evolution that is observed in the light, is composed of CO₂ from light respiration (R_L) and dark respiration (R_D). Recent storage products represents soluble storage compounds from photosynthesis. Previously fixed carbon represents soluble precursors of dark respiratory pathways. Previously fixed or remote storage products represent more remote (perhaps insoluble) forms of carbon storage. For purposes of discussion it is assumed that dark respiration (R_D) continues at the same rate in the light. Some data are available to indicate that dark respiration may be suppressed in the light (24) but there is also evidence, based on the metabolism of ¹⁴C-labeled intermediates, that shows that the dark respiration pathways continue to function in the light (19, 29). There does not appear to be a direct effect of light on dark respiration in leaves as the rate is not affected by light when photosynthesis is suppressed by lack of chlorophyll (22) or by inhibitors (10, 11). Thus in the absence of definitive evidence that dark respiration is inhibited it seems reasonable to assume that it continues. Whereas the rate of dark respiration may not be affected by light, there is a considerable amount of evidence (1, 4, 19, 31) that shows that the substrates for dark respiration do not become labeled or become labeled very slowly with "C when "CO₂ is supplied to the leaf in the light. If a dark period is imposed on the leaf after a period of "CO₂ fixation in the light, however, label rapidly enters the compounds of the tricarboxylic acid pathway (1, 4, 19, 31, 33) and "CO₂ will be evolved from the dark respiration pathways. Light respiration (R_L) is a process that only occurs in the light, persists for a short time on darkening, and is physically and chemically distinct from the process of dark respiration. It is assumed that only a single site and a single substrate for CO₂ release is involved, although multiple sites and substrates for CO₂ release cannot be excluded. It is also assumed that there is a single pathway for formation of the substrate, although again there is no evidence to rule out multiple parallel pathways. It is suggested by the results (Fig. 2), that, when the rate of photosynthesis is adequate, the substrate is supplied directly from the immediate products of CO₂ fixation via F (Fig. 9). When photosynthesis is restricted, (e.g., by lack of CO₂) substrate is still generated via (F) but the precursors in (P_s) must now be generated from compounds (e.g., recent storage product) other than CO₂. In these conditions the photosynthetic cycle must assume a respiratory character to generate substrate for decarboxylation from previously fixed compounds. The CO₂ from both light respiration (R_L) and dark respiration (R_D) will mix intimately in the intercellular spaces and that portion that escapes from the leaf in the light constitutes photorespiration. A certain portion of the CO₂ produced in these two processes will be refixed in photosynthesis and, while it is impossible to know the amount precisely, it is necessary for the interpretation of the "CO2 evolution data (see later) to make some estimate of the amount of refixation. Moss (30) has suggested that the postillumination outburst or first dark surge represents a minimum estimate of total CO₂ production during the light. From our data (Fig. 3 to 5) the dark outburst or total CO₂ production was about 8.5 mg CO₂·dm⁻²·hr⁻¹ and the rate of steady CO₂ evolution in the light was 5.6 mg CO₂·dm⁻²·hr⁻¹. The difference or refixation was equal to 34% of the total production. Samish and Koller (32) suggest that refixation is 34% and Bravdo (6) suggests that refixation is 21 to 25%. Considering all the estimates it has been assumed for purposes of discussion that refixation is about 35% of the production in 21% O₂. If, as suggested by Moss (30), total CO₂ production can be estimated from the first dark surge, the rate of CO₂ production in sunflowers in 21% O₂ was 8.5 mg CO₂·dm⁻²·hr⁻¹. This was made up of 1.7 mg CO₂·dm⁻²·hr⁻¹ from dark respiration and 6.8 mg CO₂·dm⁻²·hr⁻¹ from light respiration (8.5–1.7). If the CO₂ from dark respiration was unlabeled and the CO₂ from light respiration was equal in specific radioactivity to the ¹⁴CO₂ supplied, the CO₂ evolved from the leaf would have a relative specific radioactivity of 80% (680 units radioactivity/8.5 units CO₂). After 15 to 20 min in CO₂-free air, CO₂ evolution in the light decreases to about 3.5 mg CO₂·dm⁻²·hr⁻¹ (Figs. 3 to 5). The expected specific radioactivity of evolved ¹⁴CO₂ can also be estimated for this time if it is assumed that this decrease is due to a reduction in the rate of light respiration (possibly because the substrate cannot be generated at the same rate) and that dark respiration is unaffected. Assuming the same amount of refixation (35%) total production will be 4.7 mg CO₂·dm⁻²·hr⁻¹. Dark respiration will contribute 1.7 mg CO₂·dm⁻²·hr⁻¹ and light respiration 3.0 mg CO₂·dm⁻²·hr⁻¹. With the same assumptions as above, the relative specific radioactivity of the evolved CO₂ will be 64% (300 units radioactivity/4.7 units CO₂). It is suggested that CO₂ evolution during photosynthesis arises via (G) and (L) (Fig. 9). At 53 μ l/1 CO₂ (Fig. 2) the compounds of P₈ are not saturated with ¹⁴C, and the relative specific radioactivity after 1 hr of fixation will be less than the calculated 80% and is about 65%. At 150 μ l/1 CO₂ the compounds of P₈ are saturated with ¹⁴C, and the relative specific radioactivity is about 80% (Fig. 2). At 300 μ l/1 CO₂ the ¹⁴CO₂ evolved is close to 100% relative specific radioactivity (Fig. 2). This high specific radioactivity should not be obtained if dark respiration continues (see earlier) and more will be said of it later. During flushing with CO₂-free air in the light the relative specific radioactivity of the ¹⁴CO₂ initially evolved will be the same as that evolved during photosynthesis (Fig. 2) since the substrates are identical (Fig. 9). The amount of substrate in R_L or P_s, however, is small and is soon exhausted (Figs. 3-5) because it is not replaced via (A). Thus the substrate must soon be diluted by material drawn from recent storage product via (E) (Fig. 9) and the specific radioactivity will fall to the specific radioactivity of these storage products. At the same time the limitation on substrate supply results in a decrease in the rate of R_L. If total net fixation of ¹⁴CO₂ has been small (less than 12 mg CO₂·dm⁻²) the specific radioactivities of the recent storage products are low and the specific radioactivity of the CO₂ evolved will soon decrease to a low value (Figs. 3, 6, 8). Between 12 and 20 mg CO₂·dm⁻² of total fixation, more ¹⁴C is fixed into the recent storage products and CO2 may be evolved into CO2-free air at a constant specific radioactivity for some time (Fig. 4) before decreasing further. When total fixation reaches 20 mg CO₂·dm⁻² the recent storage products are saturated with "C and further "CO2 fixation results in an increase in the size of this pool and a slow labeling of the remote storage product (Fig. 9). Thus, after such fixations ¹⁴CO₂ will be evolved at a relative specific radioactivity of about 60% (see earlier for reasoning) during a period of flushing in CO₂-free air (Figs. 5, 6, 8) and further fixation will not result in any increase in the specific activity but will prolong the period over which 60% relative specific radioactivity "CO2 is evolved (Figs. 7, 8). After a prolonged period of flushing in CO₂-free air the pool of recent storage products will be depleted and substrate will then be supplied to R_L from previously fixed material via (D), (E), and (F). This material will not be radioactive (unless there has been an extremely long "CO₂ fixation) and thus the relative specific radioactivity of the evolved CO₂ will slowly decrease to zero (Figs. 3, 4, 7, 8). As indicated earlier, the evolution of "CO₂ at 100% relative specific radioactivity in 300 µl/1 CO₂ (Fig. 2) is not consistent with the above proposal but is consistent with a complete suppression of dark respiration. This alternative explanation requires, however, a source, other than dark respiration, of unlabeled carbon at lower CO2 concentrations and during flushing in CO2-free air. This source could be previously fixed material and about 20% of the substrate would be supplied via (K) at 150 μ l/l CO₂ and 40% at 53 μ l/l CO₂ (Fig. 2). During evolution in CO₂-free air, 60% of the substrate would be supplied either directly via (J) or indirectly via (E) (F) and 40% via (K) to yield a relative specific radioactivity of about 60%. One problem with this proposal, which is difficult to envisage, is that it requires the simultaneous generation of substrate for CO₂ evolution from two sources with some means of regulating the two pathways. It is also difficult to explain why the relative specific radioactivity of ¹⁴CO₂ evolved into CO₂-free air appears to saturate at 60 to 80% even after 4 hr (8) or 6 hr (18) of ¹⁴CO₂ fixation. If the fixation of "CO₂ is performed in low oxygen (1.5%) the compounds of P₈ and recent storage products become equal in specific radioactivity to the "CO₂ supplied. Little, if any, carbon is diverted via (F) to R_L. When oxygen (21%) is again supplied carbon flow to R_L immediately occurs and the patterns of "CO₂ evolution into CO₂-free air that are observed (Fig. 8) are similar to those observed after fixation of "CO₂ in air. When the leaf is darkened, light respiration (R_L) continues for some time after photosynthesis (P_s) has stopped. The result is the postillumination outburst of CO_2 (Figs. 3–5) which has been interpreted as a remnant of the process(es) of CO₂ production that were occurring in the light (9, 13, 15, 30, 35). The fact that the relative specific radioactivity of this outburst was identical to the relative specific radioactivity of the ¹⁴CO₂ that was being evolved in the immediately preceding light period (Fig. 3, 4, 5) adds considerable support to this view. This outburst is probably derived largely from material in R_L and is not observed in 1% O₂ because (F) and (G) are inhibited (Fig. 9). After this outburst, the specific radioactivity of the ¹⁴CO₂ evolved in the dark declined to a steady value which was much less than the specific radioactivity of the ¹⁴CO₂ evolved in the light (Figs. 3 to 5) a finding in agreement with earlier results of Goldsworthy (18). Thus, the immediate substrates for dark respiration are quite different than those for light respiration. The fact that the dark respiratory substrates become labeled with "C does not necessarily mean that "C is rapidly transferred to these compounds during fixation of "CO₂ in the light. Equally possible is a rapid flow of "C into these compounds from recent storage products or P_s via (B) and (M) after the leaf is darkened (1, 4, 19, 31, 33). Even then, the transfer could not be large as these "C-labeled substrates were exhausted in about 25 min (Figs. 3–5), and then the specific radioactivity of the "CO₂ evolved in the dark decreased. Eventually, the specific radioactivity of the "CO₂ evolved in the light and dark becomes equal (Figs. 3 and 4) and at this time both substrates are presumably derived from previously fixed or remote storage products (Fig. 9). When the leaf was flushed with normal air $(300 \,\mu\text{l}/1 \,\text{CO}_2)$ in the light ''CO₂ evolution rapidly ceased (Figs. 3–5). This does not mean that CO₂ evolution into CO₂-free air is greater than CO₂ evolution in normal air but only that the ''C-labeled compounds in P_s and R_L (Fig. 9) are rapidly turned over and replaced with unlabeled carbon. The evolution of ¹⁴CO₂ from a leaf, after a period of photosynthesis in ¹⁴CO₂, can provide much useful information on the relationship of the substrate for CO₂ evolution to the recent products of photosynthesis. It cannot, however, without a measurement of the specific radioactivity, provide, as Zelitch (38, 39) proposes, an estimate of either photorespiration or dark respiration. The specific radioactivity of 14CO2 evolved in the light is usually much greater than the specific radioactivity of "CO₂ evolved in the dark. Further, the relationship between the specific radioactivity of 14CO2 evolved in the light and that evolved in the dark is not constant, as both depend on the total amount of ¹⁴CO₂ fixed and the time of flushing in CO₂free air. Compared to CO₂ evolution into a CO₂-free air stream, we must conclude that ¹⁴CO₂ evolution is an inferior and misleading method for the assay of photorespiration or dark respiration since it suffers from the same limitations and criticisms and, in addition, is confounded by possible specific radioactivity changes. ## LITERATURE CITED - ATKINS, C. A. 1969. Intermediary metabolism of photosynthesis in relation to CO₂ evolution in the light. Ph.D. thesis. Queen's University, Kingston, Ontario. - Bassham, J. A. and M. Calvin. 1957. The Path of Carbon in Photosynthesis. Prentice Hall Inc., Engelwood Cliffs, N. J. - 3. Beevers, H. 1961. Respiratory Metabolism in Plants. Row, Peterson and Company, Evanston, Ill. - BENSON, A. A. AND M. CALVIN. 1950. The path of carbon in photosynthesis. VII. Respiration and photosynthesis. J. Exp. Bot. 1: 63-68. - BIDWELL, R. G. S., W. B. LEVIN, AND D. C. SHEPHARD. 1969. Photosynthesis, photorespiration and respiration of chloroplasts from Acetabularia mediterrania. Plant Physiol. 44: 946-954. - Bravdo, B. A. 1968. Decrease in net photosynthesis caused by respiration. Plant Physiol. 43: 479-483. - Curtis, P. E., W. L. Ogren, and R. H. Hageman. 1969. Varietal effects in soybean photosynthesis and photorespiration. Crop Sci. 9: 323-327. - D'Aoust, A. 1970. The effect of oxygen concentration on the carbon dioxide gas-exchange in some higher plants. Ph.D. thesis. Queen's University, Kingston, Ontario. - DECKER, J. P. AND J. D. WIEN. 1958. Carbon dioxide surges in green leaves. J. Solar Energy Sci. Eng. 2: 39-41. - DOWNTON, W. J. S. AND E. B. TREGUNNA. 1968. Photorespiration and glycolate metabolism: a re-examination and correlation of some previous studies. Plant Physiol. 43: 923-929. - EL-SHARKAWY, M., R. S. LOOMIS, AND W. A. WILLIAMS. 1967. Apparent reassimilation of respiratory carbon dioxide by different plant species. Physiol. Plant. 20: 171-186. - FOCK, H., J. D. BECKER, AND K. EGLE. 1970. Use of labeled carbon dioxide for separation of CO₂ evolution from true CO₂ uptake by photosynthesizing Amaranthus and sunflower leaves. Can. J. Bot. 48: 1185-1189. - FOCK, H. AND K. EGLE. 1966. Über die "Lichtatmung" bei grünen Pflanzen. Die Wirkung von Sauerstoff und Kohlendioxid auf den CO2-Gaswechsel wahrend der Licht und Dunkelphase. Beitr. Biol. Pflanz. 42: 213-239. - FOCK, H., G. KROTKOV, AND D. T. CANVIN. 1969. Photorespiration in liverworts and leaves. In: H. Metzner, ed., Progress in Photosynthesis Research, Vol. I. pp. 482-487. - FORRESTER, M. L., G. KROTKOV, AND C. D. NELSON. 1966. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 41: 422-427. - GAUHL, E. AND O. BJÖRKMAN. 1969. Simultaneous measurements on the effect of oxygen concentration on water vapor and carbon dioxide exchange in leaves. Planta 88: 187-191. - Gibbs, M. 1969. Control of photosynthesis by oxygen. Conn. Agr. Exp. Sta. New Haven Bull. 708: 63-79. - GOLDSWORTHY, A. 1966. Experiments on the origin of CO₂ released by tobacco leaf segments in the light. Phytochemistry 5: 1013-1019. - GRAHAM, D. AND D. A. WALKER. 1962. Some effects of light on the interconversion of metabolites in green leaves. Biochem. J. 82: 554-560. - HATCH, M. D. AND C. R. SLACK. 1970. Photosynthetic CO₂ fixation pathways. Annu. Rev. Plant Physiol. 21: 141-162. - Hesketh, J. 1967. Enhancement of photosynthetic CO₂ assimilation in the absence of oxygen, as dependent upon species and temperature. Planta 76: 371-374. - Hew, C. S. and G. Krotkov. 1968. Effect of oxygen on the rates of CO₂ evolution in light and in darkness by photosynthesizing and non-photosynthesizing leaves. Plant Physiol. 43: 464-466. - Hew, C. S., G. Krotkov, and D. T. Canvin, 1969. Determination of the rate of CO₂ evolution by green leaves in light. Plant Physiol. 44: 662-670. - JACKSON, W. A. AND R. J. VOLK. 1970. Photorespiration. Annu. Rev. Plant Physiol. 21: 385-432. - LUDWIG, L. J. 1968. The relationship between photosynthesis and respiration in sunflower leaves. Ph.D. thesis. Queen's University, Kingston, Ontario. - Ludwig, L. J. and D. T. Canvin. 1971. An open gas-exchange system for the simultaneous measurement of the CO₂ and ¹⁴CO₂ fluxes from leaves. Can. J. Bot. In press. - LUDWIG, L. J. AND G. KROTKOV. 1967. The kinetics of labeling of the substrates for CO₂ evolution by sunflower leaves in the light. Plant Physiol. 42: S47. - Ludwig, L. J., G. Krotkov, and D. T. Canvin. 1969. The relationship of the products of photosynthesis to the substrates for CO₂ evolution in light and darkness. *In:* H. Metzner, ed. Progress in Photosynthesis Research, Vol. I. pp. 494-502. - MARSH, H. V., JR., J. M. GALMICHE, AND M. GIBBS. 1965. Effect of light on the tricarboxylic acid cycle in Scenedesmus. Plant Physiol. 40: 1013-1022. - Moss, D. M. 1966. Respiration of leaves in light and darkness. Crop Sci. 6: 351-354. - PEDERSON, T. A., M. KIRK, AND J. A. BASSHAM. 1966. Light dark transients in levels of intermediate compounds during photosynthesis in air-adapted Chlorella. Physiol. Plant. 19: 219-231. - SAMISH, Y. AND D. KOLLER. 1968. Photorespiration in green plants during photosynthesis estimated by the use of isotopic CO₂. Plant Physiol. 43: 1129-32. - Tamas, I. A. and R. G. S. Bidwell. 1970. ¹⁴CO₂ fixation in leaf discs of Phaseolus vulgaris. Can. J. Bot. 48: 1259-1263. - TOLBERT, N. E. AND R. K. YAMAZAKI. 1969. Leaf peroxisomes and their relation to photorespiration and photosynthesis. Ann. N. Y. Acad. Sci. 168 (2): 325-342 - TREGUNNA, E. B., G. KROTKOV, AND C. D. NELSON. 1966. Effect of oxygen on the rate of photorespiration in detached tobacco leaves. Physiol. Plant. 19: 723-733. - 36. Yemm, E. W. and R. G. S. Bidwell. 1969. Carbon dioxide exchanges in leaves. I. Discrimination between ¹⁴CO₂ and ¹²CO₂ in photosynthesis. Plant Physiol. 44: 1328–1334. - ZELITCH, I. 1967. Water and CO₂ transport in the photosynthetic process. In: A. San Pietro, F. A. Greer and T. J. Army, eds., Harvesting the Sun. Academic Press, New York. pp. 231-248. - Zelitch, I. 1968. Investigations on photorespiration with a sensitive ¹⁴Cassay. Plant Physiol. 43: 1829-1837. - Zelitch, I. and P. R. Day. 1968. Variation in photorespiration. The effect of genetic differences in photorespiration on net photosynthesis in tobacco. Plant Physiol. 43: 1838-1844.